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This paper is a continuation of [4] where we computed the homology groups with 
coefficients of the infinite orthogonal and symplectic groups of an algebraically 
closed field F of characteristic #2 and 0. 

Since we have also proved in [4] that these homology groups depend only on the 
characteristic of F (if it is different from 2), in order to deal with the case of char- 
acteristic zero, it is sufficient to compute this homology when F= C. More precisely, 
with the notations of [3] and [4], we shall prove the following statement: 

Theorem 1. The obvious topological group maps O(C)-+O(C)top, Sp(C)+Sp(C)‘oP 
and U(C)-+U(C)top induce isomorphisms 

Hi(BO(Q=); Z/q) z Hi(BO(C)‘OP; Z/q), 

Hi(BSp(c); Z/q) eHi(BSp(C)'OP; Z/q), 

Hi(Bu(C); Z/q) x Hi(BU(@)toP; Z/q). 

In this statement, U(C) is ,0(C) with C provided with the complex conjugation 
involution [3] and BGtoP denotes in general the classifying space of the group G 
with its usual topology. 

This theorem is proved below along the same lines as the theorem proved in [4], 
using essentially the fundamental theorem of Hermitian K-theory [3] and Gabber- 
Suslin’s theorem [7] : 

Ki(C; 27/q) = K:““(C; Z/q) 

In fact, since we have also Ki(R; Z/q)= K:oP(R; H/q) according to [7], we can 
prove in an analogous way the following theorem: 

eOrem 2. The topological group maps O(lR)-+O(R)toP and SP(!R)--+SP(R)~~~ 
induce isomorphisms 
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Hi(BO(m); z/q) = Hi(BO(R)‘OP; Z/q), 

Hi(BSll(R); Z/q) z Hi(BSp(II?)‘“P; z/q). 

If we put together Theorems 1 and 2 and some results of K. Vogtmann on the 
stability of the homology of these classical groups [8], [9), we get the following 
interesting corollary : 

cOro!ls~ry. Let F= R or C. Then we have the .following homology isomorphisms: 

Hi(BQ,(F); z/q) a ff~(BO~~(F,‘“P; Z/q) for n L 3i, 

M,(BSP2,r(F); n/q) s Hi(BSp2n(F)‘OP; Z/q) for n 1% + 3. 

The theorems and the corollary give more evidence 
conjecture which is still 

for the Friedlander-Milnor 

Hi(BG; h/q)~Hi(BGtop~ Z/q) for any Lie group G. 

Now the Theorems 1 and 2 are consequences 
nature which we shall use elsewhere f5]: 

of a of a more general 

Theorem 3* Let A be a Banach algebra with involution. Then 

and 
Y’,t~)=~~;opW, &(A; H/q) = K1’Op(A; Z/q) 

,.&,(A; Z/‘q)z,L~p(A; Z/q). 

Let us assume moreover that Ki(A; Z/q)= K{Op(A; Z/q) for 25 &IV; then 

cLi(A; ?2/q)z,LpP(A; Z/q) for 25&N. 

Proof. For simplicity’s sake, let us drop the letter A in the notations: we shall write 
Ki for K,(A), Kpp for Kyp(A), etc. Following [4] we shall also write Ki, CEi, . . . for 
the @OUpS Ki(A; Z/4), ,Li(A; Z/q), . . . 

It is clear that the maps Jr jELyp and $$ --% E W:Op are surjective. Let Q! E E Wr 
be such that v(ez)=O. The argument used in Milnor’s book [6, p. 581 shows that a 
is represented by a product of hyperbolic matrices in ,0,,,(A) of the form 

Cxi = 
( 

1 +ai bi 

ci 1 +di > 

where ai, bi, c,, di are n x n matrices close to 0 (for the Banach algebra topology). 
Now the argument used in 12, p. 4051 shows that ai is a product of hyperbolic 
matrices and &-elementary matrices. Hence a = 0 and $I$ = E Wpp. 

e have two exact sequences 
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Since the kernel of (T is generated by matrices of the form 1 +/I where p is close 
to 0, this kernel is q-divisible (consider TrD). Therefore by diagram chasing, 

J P& 1 
C'OP 

l 
The same argument shows that RI =I?:‘“. 

With the notations of [3) and [4], simple diagram chasing in the diagrams 

shows that 
kernel. Let 

According 

‘i---“-“-‘i;LC[ 

E u;oPLE (J~““-----b 
JJl 

- toP.-,E @P.L,, qP 

to the fundamental theorem of Hermitian K-theory ([2) and [3i), 

J1= +Vo and JIoP = _-E @Op. Therefore, the map Jl -+ E Ulop is surjective with 
q-divisible kernel and the map ED1 +Efiiop is an isomorphism. Using the fundamentiil 
theorem of Hermitian K-theory again (the mod q version), we also have an isomer- 
phism Cro= E riop for any E. 

Kl - EL1 - Jo -K-L 0 E 0 

pop 
1 

- 
E 

L'pP- u top-K - L 
& 0 0 & 0 

2% - Kl -v & 0 -L-K & 0 0 

JpP-pP- 
1 

pp- L ------+K 
& 0 & 0 0 

EUo=$Y~p and that the map El/O-tgV~oP is surjective with q-divisible 
us consider the diagram of exact sequences 

Finally, if & =Eyp, the diagram of exact sequences 

t E 2 -- K2 ------+v & 1 - ELI - K 1 

32 I i 

t 

, 

L -top -top 
E 2 

,jpP._> pp------+ 
2 & 1 

EpP-----+K 1 
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of the map E 

~~~~rdi~~ tia what we have just proved, (Hi) is satisfied if Nzz2, Therefore, it is 
f~cje~t ta prc~e t~aF (&)- ( 

=.+~+ and E _+ ~~~~~ we have the f~~lQwi~~ ~~rnrn~tat~ve 
three isomor~~isms and one e~imor~hism 

L* -top 
E r-b1 

--=---hK;yq w f,mw 
e i-t-1 

------Qi’S”I------4K. 
1+1 

pfies E J7;: f= E cjop. Focally, if 1 Z,S i<N-- 1, the: di ram of exact se 
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The gruff of this theorem is ~~rn~lete~y analogous to that of Theorem 3: we only 
have to replace KifoP, ELfop, . . . t ). according to Gabber and Susfin 
([I] and ET]), the ~y~~t~~~es of the theorem are fu~fi~~~d when B = A /I where (A, I) 
is a Henselian pair with 1 \q E A such that f is invariant by the i~v~~uti~n and such 
that there exists A E A with A + x= I (if q is even). For instanter 

ELi(Zp; Z/p)e,Li(Z/p; Z/q) with p#2 if q is even, 

Nate. Very recently~ J.F. Jardine [IO] has proved analogous results using also [zj, 
131 and [7]. In particulars he has proved Theorem 1 for O(C) and Sp(C) and a cor- 
ollary of Theorem 4 for a ~enselian pair (A, I) where B = A/l is a field. 
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