RELATIONS BETWEEN ALGEBRAIC K-THEORY AND HERMITIAN \boldsymbol{K}-THEORY

Max KAROUBI
U.E.R. Mathématiques, Université Paris 7, 2 Place Jussieu, 75251 Paris, France

Communicated by E.M. Friedlander
Received 1 November 1983

This paper is a continuation of [4] where we computed the homology groups with coefficients of the infinite orthogonal and symplectic groups of an algebraically closed field F of characteristic $\neq 2$ and 0 .

Since we have also proved in [4] that these homology groups depend only on the characteristic of F (if it is different from 2), in order to deal with the case of characteristic zero, it is sufficient to compute this homology when $F=\mathbb{C}$. More precisely, with the notations of [3] and [4], we shall prove the following statement:

Theorem 1. The obvious topological group maps $\mathrm{O}(\mathbb{C}) \rightarrow \mathrm{O}(\mathbb{C})^{\text {top }}, \mathrm{Sp}(\mathbb{C}) \rightarrow \mathrm{Sp}(\mathbb{C})^{\text {top }}$ and $\mathrm{U}(\mathbb{C}) \rightarrow \mathrm{U}(\mathbb{C})^{\mathrm{top}}$ induce isomorphisms

$$
\begin{aligned}
& H_{i}(B \mathrm{O}(\mathbb{C}) ; \mathbb{Z} / q) \approx H_{i}\left(B \mathrm{O}(\mathbb{C})^{\mathrm{top}} ; \mathbb{Z} / q\right) \\
& H_{i}(B \mathrm{Sp}(\mathbb{C}) ; \mathbb{Z} / q) \approx H_{i}\left(B \operatorname{Sp}(\mathbb{C})^{\mathrm{top}} ; \mathbb{Z} / q\right), \\
& H_{i}(B \cup(\mathbb{C}) ; \mathbb{Z} / q) \approx H_{i}\left(B \mathrm{U}(\mathbb{C})^{\mathrm{top}} ; \mathbb{Z} / q\right)
\end{aligned}
$$

In this statement, $U(\mathbb{C})$ is ${ }_{1} O(\mathbb{C})$ with \mathbb{C} provided with the complex conjugation involution [3] and $B G^{\text {top }}$ denotes in general the classifying space of the group G with its usual topology.

This theorem is proved below along the same lines as the theorem proved in [4], using essentially the fundamental theorem of Hermitian K-theory [3] and GabberSuslin's theorem [7]:

$$
K_{i}\left(\mathbb{C} ; z_{-}^{\eta} / q\right) \approx K_{i}^{\mathrm{top}}(\mathbb{C} ; \mathbb{Z} / q)
$$

In fact, since we have also $K_{i}(\mathbb{R} ; \mathbb{Z} / q) \approx K_{i}^{\text {iop }}(\mathbb{R} ; \mathbb{Z} / q)$ according to [7], we can prove in an analogous way the following theorem:

Theorem 2. The topological group maps $\mathrm{O}(\mathbb{R}) \rightarrow \mathrm{O}(\mathbb{R})^{\text {iop }}$ and $\mathrm{Sp}(\mathbb{R}) \rightarrow \mathrm{Sp}(\mathbb{R})^{\text {iop }}$ induce isomorphisms

$$
\begin{aligned}
& H_{i}(B O(\mathbb{R}) ; \mathbb{Z} / q) \approx H_{i}\left(B O(\mathbb{R})^{\mathrm{top}} ; \mathbb{Z} / q\right) \\
& H_{i}(B \operatorname{Sb}(\mathbb{R}) ; \mathbb{Z} / q) \approx H_{i}\left(B \operatorname{Sp}(\mathbb{R})^{\mathrm{top}} ; \mathbb{Z} / q\right)
\end{aligned}
$$

If we put together Theorems 1 and 2 and some results of K. Vogtmann on the stability of the homology of these classical groups [8], [9], we get the following interesting corollary;

Corollary. Let $F=\mathbb{R}$ or \mathbb{C}. Then we have the following homology isomorphisms:

$$
\begin{array}{ll}
H_{i}\left(B O_{2 n}(F) ; \mathbb{Z} / q\right) \approx H_{i}\left(B \mathrm{O}_{2 n}(F)^{\mathrm{top}} ; \mathbb{Z} / q\right) & \text { for } n \geq 3 i, \\
H_{i}\left(B S_{2 n}(F) ; \mathbb{Z} / q\right) \approx H_{i}\left(B \mathrm{Sp}_{2 n}(F)^{\mathrm{top}} ; \mathbb{Z} / q\right) & \text { for } n \geq 3 i+3 .
\end{array}
$$

The theorems and the corollary give more evidence for the Friedlander-Milnor conjecture which is still open:

$$
H_{i}(B G ; \mathbb{Z} / q) \approx H_{i}\left(B G^{\text {top }} ; \mathbb{Z} / q\right) \quad \text { for any Lie group } G
$$

Now the Theorems 1 and 2 are consequences of a theorem of a more general nature which we shall use elsewhere [5]:

Theorem 3. Let A be a Banach algebra with involution. Then

$$
{ }_{\varepsilon} W_{1}(A) \simeq_{\varepsilon} W_{1}^{\mathrm{top}}(A), \quad K_{1}(A ; \mathbb{Z} / q) \approx K_{1}^{\mathrm{top}}(A ; \mathbb{Z} / q)
$$

and

$$
{ }_{\varepsilon} L_{1}(A ; \mathbb{Z} / q) \approx_{\varepsilon} L_{1}^{\mathrm{top}}(A ; \mathbb{Z} / q)
$$

Let us assume moreover that $K_{i}(A ; \mathbb{Z} / q) \approx K_{\mathrm{i}}^{\text {top }}(A ; \mathbb{Z} / q)$ for $2 \leq i \leq N ;$ then

$$
{ }_{\varepsilon} L_{i}(A ; \mathbb{Z} / q) \approx_{\varepsilon} L_{i}^{\mathrm{top}}(A ; \mathbb{Z} / q) \text { for } 2 \leq i \leq N
$$

Proof. For simplicity's sake, let us drop the letter A in the notations: we shall write K_{i} for $K_{i}(A), K_{i}^{\text {top }}$ for $K_{i}^{\text {top }}(A)$, etc. Following [4] we shall also write $\bar{K}_{i},{ }_{\varepsilon} \bar{L}_{i}, \ldots$ for the groups $K_{i}(A ; \mathbb{Z} / q),{ }_{\varepsilon} L_{i}(A ; \mathbb{Z} / q), \ldots$

It is clear that the maps ${ }_{\varepsilon} L_{1} \rightarrow{ }_{\varepsilon} L_{1}^{\text {top }}$ and ${ }_{\varepsilon} W_{1} \xrightarrow{\gamma}{ }_{\varepsilon} W_{1}^{\text {top }}$ are surjective. Let $\alpha \in_{\varepsilon} W_{1}$ be such that $\gamma(\alpha)=0$. The argument used in Milnor's book [6, p. 58] shows that α is represented by a product of hyperbolic matrices in ${ }_{\varepsilon} \mathrm{O}_{n, n}(A)$ of the form

$$
\alpha_{i}=\left(\begin{array}{cc}
1+a_{i} & b_{i} \\
c_{i} & 1+d_{i}
\end{array}\right)
$$

where $a_{i}, b_{i}, c_{i}, d_{i}$ are $n \times n$ matrices close to 0 (for the Banach algebra topology). Now the argument used in [2, p. 405] shows that α_{i} is a product of hyperbolic matrices and ε-elementary matrices. Hence $\alpha=0$ and ${ }_{\varepsilon} W_{1} \approx_{\varepsilon} W_{1}^{\text {top }}$.

We have two exact sequences

Since the kernel of σ is generated by matrices of the form $1+\beta$ where β is close to 0 , this kernel is q-divisible (consider $\sqrt[q]{1+\beta}$). Therefore oy diagram chasing, ${ }_{\varepsilon} \bar{L}_{1} \approx{ }_{\varepsilon} \bar{L}_{1}^{\text {top }}$. The same argument shows that $\bar{K}_{1} \approx \bar{K}_{1}^{\text {top }}$.

With the notations of [3] and [4], simple diagram chasing in the diagrams

shows that ${ }_{\varepsilon} U_{0} \approx{ }_{\varepsilon} U_{0}^{\text {top }}$ and that the map ${ }_{\varepsilon} V_{0} \rightarrow_{\varepsilon} V_{0}^{\text {top }}$ is surjective with q-divisible kernel. Let us consider the diagram of exact sequences

According to the fundamental theorem of Hermitian K-theory ([2] and [31), ${ }_{\varepsilon} U_{1} \approx{ }_{-\varepsilon} V_{0}$ and ${ }_{\varepsilon} U_{1}^{\text {top }} \approx{ }_{-\varepsilon} V_{0}^{\text {top }}$. Therefore, the map ${ }_{\varepsilon} U_{1} \rightarrow{ }_{\varepsilon} U_{1}^{\text {top }}$ is surjective with q-divisible kernel and the $\operatorname{map}_{\varepsilon} \bar{U}_{1} \rightarrow{ }_{\varepsilon} \bar{U}_{1}^{\text {top }}$ is an isomorphism. Using the fundamental theorem of Hermitian K-theory again (the $\bmod q$ version), we also have an isomerphism $\bar{V}_{0} \approx_{\varepsilon} \bar{V}_{0}^{\text {top }}$ for any ε.

Finally, if $\bar{K}_{2} \approx \bar{K}_{2}^{\text {top }}$, the diagram of exact sequences

implies the surjectivity of the map ${ }_{\varepsilon} \bar{\nabla}_{1} \rightarrow_{\varepsilon} \bar{V}_{1}^{\text {top }}$.
For a fixed A and any ε, let us call $\left(\mathrm{H}_{i}\right)$ and $\left(\mathrm{H}_{i}^{\prime}\right)$ the following hypotheses:
$\left(\mathrm{H}_{i}\right)\left\{\begin{array}{ll}\bar{L}_{i}(A) \rightarrow{ }_{\varepsilon} \bar{L}_{i}^{\text {top }}(A) & \text { is an isomorphism } \\ \bar{V}_{i-1}(A) \rightarrow{ }_{\varepsilon} \bar{V}_{i-1}^{\text {top }}(A) & \text { is an isomorphism }\end{array}\right\}$
According to what we have just proved, $\left(\mathrm{H}_{1}\right)$ is satisfied if $N \geq 2$. Therefore, it is sufficient to prove that $\left(\mathrm{H}_{i}\right) \Rightarrow\left(\mathrm{H}_{i+1}\right)$ if $1 \leq i<N-1$ and that $\left(\mathrm{H}_{i}\right) \Rightarrow\left(\mathrm{H}_{i+1}^{\prime}\right)$ if $1 \leq$ $i \leq N-1$.
Since $\varepsilon_{\varepsilon} \bar{U}_{j} \approx{ }_{-\varepsilon} \bar{V}_{j-1}$, and $\bar{U}_{j}^{\text {top }} \approx{ }_{-\varepsilon} \bar{V}_{j-1}^{\text {top }}$, we have the following commutative diagram with three isomorphisms and one epimorphism

if $1 \leq i \leq N-1$. Therefore ${ }_{\varepsilon} L_{i+1} \approx_{\varepsilon} \bar{L}_{i+1}^{\text {top }}$ by the Five Lemma.
In the same way, assuming again (H_{i}) for $1 \leq i<N-1$, the commutative diagram of exact sequences

implies ${ }_{\varepsilon} \bar{V}_{i} \approx{ }_{\varepsilon} \bar{V}_{i}^{\text {top }}$. Finally, if $1 \leq i<N-1$, the diagram of exact sequences

implies the surjectivity of the map ${ }_{\varepsilon} \bar{V}_{i+1} \rightarrow_{\varepsilon} \bar{V}_{i+1}^{\text {top }}$.
This proof of Theorem 3 is an illustration of a principle which roughly states that a general theorem for $K_{i}(A ; \mathbb{Z} / q)$ implies a general theorem for ${ }_{\varepsilon} L_{i}(A ; \mathbb{Z} / q)$. As an other example we offer the following theorem:

Theorem 4. Let $A \rightarrow B$ be a map of rings with involution such that

$$
K_{0}(A) \rightarrow K_{0}(B), \quad{ }_{\varepsilon} L_{0}(A) \rightarrow{ }_{\varepsilon} L_{0}(B), \quad{ }_{\varepsilon} W_{1}(A) \rightarrow{ }_{\varepsilon} W_{1}(B)
$$

are isomorphisms, $\left.K_{1} A\right) \rightarrow K_{1}(B)$ and ${ }_{\varepsilon} L_{1}(A) \rightarrow{ }_{\varepsilon} L_{1}(B)$ are surjective with q-divisible kernels (for all ε). Then

$$
{ }_{\varepsilon} L_{1}(A: \mathbb{Z} / q)={ }_{\varepsilon} L_{1}(B ; \mathbb{Z} / q) \quad \text { and } \quad K_{1}(A ; \mathbb{Z} / q) \approx K_{1}(B ; \mathbb{Z} / q)
$$

Let us assume moreover that $K_{i}(A ; \mathbb{Z} / q) \approx K_{i}(B ; \mathbb{Z} / q)$ for all i such that $2 \leq i \leq N$ and if q is even that there exists an element λ of A such that $\lambda+\bar{\lambda}=1$. Then

$$
{ }_{\varepsilon} L_{i}(A ; \mathbb{Z} / q) \approx_{\varepsilon} L_{i}(B ; \mathbb{Z} / q) \quad \text { and } \quad \mathrm{H}_{i}\left({ }_{\varepsilon} \mathrm{O}(A) ; \mathbb{Z} / q\right) \approx \mathrm{H}_{i}\left(_{\varepsilon} \mathrm{O}(B) ; \mathbb{Z} / q\right)
$$

for any ε and $1 \leq i \leq N$.

The proof of this theorem is completely analogous to that of Theorem 3: we only have to replace $K_{i}^{\text {top }},{ }_{\varepsilon} L_{i}^{\text {top }}, \ldots$, by $K_{i}(B),{ }_{\varepsilon} L_{i}(B)$. According to Gabber and Suslin ([1] and [7]), the hypotheses of the theorem are fulfilled when $B=A / I$ where (A, I) is a Henselian pair with $1 / q \in A$ such that I is invariant by the involution and such that there exists $\lambda \in A$ with $\lambda+\bar{\lambda}=1$ (if q is even). For instance,

$$
{ }_{\varepsilon} L_{i}\left(\overrightarrow{\mathbb{Z}}_{p} ; \mathbb{Z} / p\right) \approx_{\varepsilon} L_{i}(\mathbb{Z} / p ; \mathbb{Z} / q) \text { with } p \neq 2 \text { if } q \text { is even. }
$$

Note. Very recently, J.F. Jardine [10] has proved analogous results using also [2], [3] and [7]. In particular, he has proved Theorem 1 for $\mathrm{O}(\mathbb{C})$ and $\mathrm{Sp}(\mathbb{C})$ and a corollary of Theorem 4 for a Henselian pair (A, I) where $B=A / I$ is a field.

References

[1] O. Gabber, K-theory of Henselian pairs (to appear).
[2] M. Karoubi, Périodicité de la K-théorie hermit! nnne, Lecture Notes in Math. 343 (Springer, Berlin, 1973).
[3] M. Karoubi, Le théorème fondamental de la K-ihéorie hermitienne, Annals of Math. 112 (1980) 259-282.
[4] M. Karoubi, Homology of the infinite orthogonal and symplectic groups over algebraically closed fields, Invent. Math. 73 (1983) 247-250.
[5] M. Karoubi, Homologie de groupes discrets associés à des algèbres d'opérateurs (in preparation).
[6] J. Milnor, Introduction to Algebraic K-theory, Annal- of Math. Studies 72 (Princeton Univ. Press, Princeton, NJ).
[7] A. Suslin, K-theory of local fields, in this volume.
[8] K. Vogtmann, Homology stability for $\mathrm{O}_{n, n}$, Comm. in Algebra 7 (1) (1979) 9-38.
[9] K. Vogtmann, Spherical posets and homology stability for $\mathrm{O}_{n, n}$, Topology 20 (1981) 119-132.
[10] J.F. Jardine, A rigidity theorem for L-theory, Preprint, Univ. of Chigago

